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Abstract. We study a functional of p(x) growth (p(x) ≥ 1) which provides a model for image denoising, enhancement,
and restoration. The diffusion resulting from the proposed model is a combination of Total Variation based regularization and
Gaussian smoothing. The existence, uniqueness, and long-time behavior of the proposed model are established. Experimental
results illustrate the effectiveness of the model in image restoration.
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1. Introduction.

1.1. Background. In this paper we propose a new model for image restoration. The version of this
problem we address is to recover an image, u, from an observed, noisy image, I, where the two are related
by I = u + noise. The proposed model incorporates the strengths of the various types of diffusion arising
from the minimization problem

min

∫

Ω

|Du|p +
λ

2
(u− I)2 (1.1)

for 1 ≤ p ≤ 2 (λ ≥ 0 and Ω is an open, bounded subset of Rn with Lipshitz boundary). Specifically, we
exploit the benefits of isotropic diffusion (p = 2), total variation based diffusion (p = 1), and more general
anisotropic diffusion (1 < p < 2).

Total Variation Minimization, p = 1:

Total Variation (TV) based regularization, p = 1, as first proposed by Rudin, Osher and Fatemi [18] does
an excellent job at preserving edges while reconstructing images. Mathematically this is reasonable, since it
is natural to study solutions of this problem in the space of functions of bounded variation, BV (Ω), allowing
for discontinuities which are necessary for edge reconstruction. This phenomenon can also be explained
physically, since the resulting diffusion is strictly orthogonal to the gradient of the image. The TV model
has been studied extensively (see [1, 4], et.al) and has proved to be an invaluable tool for preserving edges
in image restoration problem.

Given the success of TV-based diffusion, various modifications have been introduced. For instance, Chan
and Strong [19] proposed the Adaptive Total Variation model

min

∫

Ω

α(x)|∇u|

in which they introduce a control factor, α(x), which slows the diffusion at likely edges. This controls the
speed of the diffusion and has demonstrated good results as it aids in noise reduction. It is also good at
reconstructing edges, since the type of diffusion (strictly orthogonal to the image gradient) is the same as
that of the original TV model.

TV-based denoising favors solutions that are piecewise constant. This sometimes causes a staircasing
effect [2, 4, 15] in which noisy smooth regions are processed into piecewise constant regions (see figure 5.1),
a phenomenon long observed in the literature, e.g. [8, 15, 17, 20, 21]. Not only do ’blocky’ solutions fail to
satisfy the ubiquitous ’eyeball norm’, but they can also develop ’false edges’ which can mislead a human or
computer into identifying erroneous features not present in the true image.
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Minimization Problem (1.1) with 1 < p ≤ 2:

On the other hand, one can explore different types of diffusion arising from (1.1). Choosing p = 2 results
in isotropic diffusion which solves the staircasing problem, but alone is not good for image reconstruction
since it has no mechanism for preserving edges. Different values of 1 < p < 2 result in anisotropic diffusion
which is somewhere between TV-based and isotropic smoothing. This type of diffusion can be effective in
reconstructing piecewise smooth regions. However, a fixed value of 1 < p < 2 may not allow for discontinu-
ities, thus obliterating edges. This was shown to be true in the discrete case [15].

Combination of TV-based and isotropic diffusion:

Given the strengths of (1.1) for the different values of p, it seems worthwhile to investigate a model
which could self adjust in order to reap the benefits of each. To this end, Chambolle and Lions [4] proposed
minimizing the following energy functional which combines isotropic and TV-based diffusion:

min
u∈H1(Ω)

1

2β

∫

|∇u|≤β

|∇u|2 +

∫

|∇u|>β

|∇u| −
β

2
. (1.2)

In this model, the diffusion is strictly perpendicular to the gradient where |∇u| > β; that is, where edges
are most likely present, and isotropic where |∇u| ≤ β. This model is successful in restoring images where
homogeneous regions are separated by distinct edges; however, if the image intensities representing objects
are non-uniform or if an image is highly degraded this model may become sensitive to the threshold, β (see
figures 5.2, 5.3, and 5.4). In this case, one might want more flexibility when choosing both the direction and
speed of diffusion.

Blomgren, Chan, Mulet, and Wong [2] proposed the following minimization problem

min

∫

Ω

|∇u|p(|∇u|)dx

where lims→0 p(s) = 2, lims→∞ p(s) = 1 and p is monotonically decreasing. This model should reap the
benefits of both isotropic and TV-based diffusion, as well as a combination of the two. However, it is difficult
to study mathematically since the lower semi-continuity of the functional is not readily evident.

1.2. Functionals with p(x) Growth. The model proposed in this paper capitalizes on the strengths
of (1.1) for the different values of 1 ≤ p ≤ 2. It ensures TV based diffusion (p ≡ 1) along edges and Gaussian
smoothing (p ≡ 2) in homogeneous regions. Furthermore, it employs anisotropic diffusion (1 < p < 2) in
regions which may be piecewise smooth or in which the difference between noise and edges is difficult to
distinguish. We let p = p(x) depend on the location, x, in the image. This way the direction and speed of
diffusion at each location depends on the local behavior. Moreover, our choice of exponent yields a model
which we can show is theoretically sound.

To this end, the proposed model is as follows:

min
u∈BV ∩L2(Ω)

∫

Ω

φ(x,Du) +
λ

2
(u− I)2, (1.3)

where

φ(x, r) :=

{
1

q(x) |r|
q(x), |r| ≤ β

|r| − βq(x)−βq(x)

q(x) , |r| > β
(1.4)

where β > 0 is fixed and 1 < α ≤ q(x) ≤ 2. For instance, one can choose

q(x) = 1 +
1

1 + k|∇Gσ ∗ I(x)|2
(1.5)

where Gσ(x) =
1
σ
exp

(
−|x|2/4σ2

)
is the Gaussian filter and k > 0 and σ > 0 are fixed parameters.
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The main benefit of (1.3)-(1.4) is the manner in which it accommodates the local image information.
Where the gradient is sufficiently large (i.e. likely edges), only TV-based diffusion will be used. Where
the gradient is close to zero (i.e. homogeneous regions), the model is isotropic. At all other locations,
the filtering is somewhere between Gaussian and TV-based. Specifically, the type of anisotropy at these
ambiguous regions varies according to the strength of the gradient. This enables the model to have a much
lower dependence on the threshold (see figures 5.2, 5.3, 5.4, and 5.5).

For several reasons, we’ve chosen here to prove the well-posedness of the Dirichlet boundary value
problem

min
u∈BVg∩L2(Ω)

∫

Ω

φ(x,Du) +
λ

2
(u− I)2 (1.6)

where

BVg(Ω) := {u ∈ BV (Ω)|u = g on ∂Ω}, (1.7)

and it’s associated flow

u̇− div (φr(x,Du)) + λ(u− I) = 0, in ΩT (1.8)

u(x, t) = g(x), on ∂ΩT (1.9)

u(0) = I, in Ω (1.10)

where

ΩT := Ω× [0, T ] and ∂ΩT := ∂Ω× [0, T ] (1.11)

First, the theory is more interesting and challenging mathematically than (1.3). Second, all of the techniques
used to study (1.6) also directly solve (1.3). Finally, the Dirichlet problem (1.6) also has direct application
in image processing, as it can be used for image interpolation [3, 14], also referred to as noise-free image
inpainting [5, 6].

For a special case of (4), where q(x) ≡ 2, i.e. φ(r) := |r|− 1
2 when |r| > 1 and φ(r) :=

1
2 |r|

2 when |r| ≤ 1,
the existence, uniqueness and long-time behavior of solutions of (1.6) and it’s related flow were studied by
Zhou [22]. Later, these results were extended to general convex linear-growth functionals, φ = φ(Du) by
Hardt and Zhou [11]. In this paper we study the more general case where the functional has non-standard
growth. We use a different approximate functional than [22], so different estimates are required. Our analysis
is also based on techniques introduced in [7], however, our energy functional requires alternate techniques to
establish lower semi-continuity and to pass to the limit from the approximate solution.

The paper is organized as follows. In section 2 we establish some important properties of φ(x,Du).
In section 3 we prove the existence and uniqueness of the solution of the minimization problem (1.6). In
section 4 we study the associated evolution problem (1.8)-(1.10). Specifically, we define the notion of a weak
solution of (1.8)-(1.10), derive estimates for the solution of an approximating problem, prove existence and
uniqueness of the solution of (1.8)-(1.10) and discuss the behavior of the solution as t → ∞. In section 5
we provide our numerical algorithm and experimental results to illustrate the effectiveness of our model in
image restoration.

2. Properties of φ:. Recall that for u ∈ BV (Ω),

Du = ∇u · Ln +Dsu

is a Radon measure, where ∇u is the density of the absolutely continuous part of Du with respect to the
n-dimensional Lebesgue measure, Ln, and Dsu is the singular part (see [9]).

Definition 2.1. For v ∈ BV (Ω), define
∫

Ω

φ(x,Dv) :=

∫

Ω

φ(x,∇v)dx+

∫

Ω

|Dsv|
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where φ is defined as in (1.4). Furthermore, denote

Φλ(v) :=

∫

Ω

φ(x,Dv) +
λ

2

∫

Ω

|v − I|2dx, (2.1)

Φg(v) :=

∫

Ω

φ(x,Dv) +

∫

∂Ω

|v − g|dHn−1 (2.2)

and

Φλ,g(v) :=

∫

Ω

φ(x,Dv) +
λ

2

∫

Ω

|v − I|2dx+

∫

∂Ω

|v − g|dHn−1 (2.3)

Remark 2.2. For simplicity, we assume that the threshold β = 1 in (1.4) for all of our theoretical results.

Lemma 2.3. Using the notation in definition 2.1,

Φg(u) = Φ̃g(u) (2.4)

for all u ∈ BV (Ω) where

Φ̃g(u) := sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫

Ω

−udivψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx +

∫

∂Ω

ψ · ngdHn−1.

Furthermore, Φg(u) is lower semi-continuous on L
1(Ω); that is, if uj , u ∈ BV (Ω) satisfy uj → u in L1(Ω)

as j →∞ then

Φg(u) ≤ lim inf
j→∞

Φg(uj). (2.5)

Proof. First note that for each ψ ∈ C1(Ω,Rn), the map

u −→

∫

Ω

−udivψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx+

∫

∂Ω

ψ · ngdHn−1

is continuous and affine on L1(Ω). Therefore, Φ̃g(u) is convex and lower semi-continuous on L
1(Ω) and the

domain of Φ̃g(u), {u | Φ̃g(u) <∞}, is precisely BV (Ω).

Now we show that Φg(u) = Φ̃g(u). For u ∈ BV (Ω), we have that for each ψ ∈ C
1(Ω,Rn),

−

∫

Ω

udivψdx =

∫

Ω

∇u · ψdx+

∫

Ω

Dsu · ψ −

∫

∂Ω

uψ · ndHn−1

and so

Φ̃g(u) = sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫

Ω

∇u · ψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx+

∫

Ω

Dsu · ψ −

∫

∂Ω

(u− g)ψ · ndHn−1

Since the measures dx, Dsu, and dHn−1 are mutually singular, standard arguments show that

Φ̃g(u) = sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫

Ω

∇u · ψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx+

∫

Ω

|Dsu|+

∫

∂Ω

|u− g|dHn−1.
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It only remains to show that

∫
φ(x,∇u)dx = sup

ψ∈C1(Ω,Rn)
|ψ|≤1

∫
∇u · ψ −

q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx. (2.6)

Since any ρ ∈ L∞(Ω,Rn) can be approximated in measure by ψ ∈ C1(Ω,Rn), we have that

sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫

Ω

∇u · ψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx = sup

ρ∈L∞(Ω,Rn)
|ρ|≤1

∫

Ω

∇u · ρ−
q(x)− 1

q(x)
|ρ|

q(x)
q(x)−1 dx. (2.7)

Choosing ρ(x) = 1{|∇u|≤1}|∇u|
q(x)−1 ∇u

|∇u| + 1{|∇u|>1}
∇u
|∇u| , where 1E is the indicator function on E, we see

that the right hand side of (2.7) is

≥

∫

Ω

1

q(x)
|∇u|q(x)1{|∇u|≤1} +

[
|∇u| −

q(x)− 1

q(x)

]
1{|∇u|>1}dx =

∫

Ω

φ(x,∇u)dx. (2.8)

To show equality, we proceed as follows. For any ρ ∈ L∞(Ω,Rn), since q(x) > 1 we have that for almost all
x,

∇u(x) · ρ(x) ≤
1

q(x)
|∇u|q(x) +

q(x)− 1

q(x)
|ρ(x)|

q(x)
q(x)−1

In particular, if |∇u| ≤ 1,

∇u(x) · ρ(x)−
q(x)− 1

q(x)
|ρ(x)|

q(x)
q(x−1) ≤

1

q(x)
|∇u|q(x) (2.9)

Finally, we claim that if |∇u| > 1,

∇u(x) · ρ(x)−
q(x)− 1

q(x)
|ρ(x)|

q(x)
q(x)−1 ≤ |∇u| −

q(x)− 1

q(x)
(2.10)

Indeed, if |∇u| > 1 and |ρ| ≤ 1,then since q(x) > 1 for almost all x we have that

∇u · ρ = |∇u|
∇u

|∇u|
· ρ ≤ |∇u|

[
1

q(x)
+
q(x)− 1

q(x)
|ρ|

q(x)
q(x)−1

]

and so

∇u · ρ−
q(x)− 1

q(x)
|ρ|

q(x)
q(x)−1 ≤

1

q(x)
|∇u|+ (|∇u| − 1)

q(x)− 1

q(x)
|ρ|

q(x)
q(x)−1 ≤ |∇u| −

q(x)− 1

q(x)

Combining, (2.7), (2.8), (2.9), and (2.10), we have that

sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫

Ω

∇u · ψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx =

∫

Ω

φ(x,∇u)dx

and so for all u ∈ BV (Ω), Φ̃g(u) = Φg(u) where Φg is defined in (2.2).

Lemma 2.4. Suppose Ω ⊂ Rn is open, bounded and has Lipschitz boundary and let w ∈ BV ∩ L2(Ω).
Then for each δ > 0 there exists w̃δ ∈ C

∞ ∩H1(Ω) such that

Φλ,g(w̃δ) ≤ Φλ,g(w) + δ. (2.11)
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Furthermore, if we also assume that Trw = TrG in L1(∂Ω) for some G ∈ H1(Ω), then for each δ > 0, there
exists wδ ∈ H

1(Ω) satisfying

Trwδ = Trw in L1(∂Ω), (2.12)

wδ → w strongly in L2(Ω) as δ → 0, and (2.13)

Φλ,g(wδ) ≤ Φλ,g(w) + δ. (2.14)

where TrG is the trace of G on ∂Ω.

Proof. : Fix w ∈ BV ∩ L2(Ω). Using lemma 2.3 and a slight modification of the proof of Theorem 1.17
and Remark 1.18 in [10], there exists a sequence {wj} in C

∞ ∩H1(Ω) such that

Trwj = Trw in L1(∂Ω) and (2.15)

wj → w in L2(Ω) and (2.16)

lim
j→∞

Φg(wj) = Φg(w). (2.17)

Therefore, for each δ > 0 there exists a function w̃δ ∈ C
∞ ∩H1(Ω) such that

Φλ,g(w̃δ) ≤ Φλ,g(w) + δ (2.18)

and (2.11) holds.

Now suppose also that Trw = TrG in L1(∂Ω). Then by (2.15), w̃δ − G ∈ H1
0 (Ω), so there exists a

function hδ ∈ C
∞
0 (Ω) such that

||w̃δ −G− hδ||H1(Ω) + ||w̃δ −G− hδ||L2(Ω) ≤ δ (2.19)

Let wδ = G+ hδ ∈ H
1(Ω). Then we have that

Trwδ = Trw in L1(∂Ω),

wδ → w in L2(Ω) as δ → 0, and

Φλ,g(wδ) ≤ Φλ,g(w) + δ.

and the proof is complete.

Remark 2.5. If w ∈ BV ∩ L∞(Ω), then there exist wδ ∈ H
1 ∩ L∞(Ω) such that in addition to (2.12)-

(2.14), we also have that

||wδ||L∞(Ω) ≤ C(Ω)||w||L∞(Ω) (2.20)

3. The Minimization Problem. In this section we study the existence and uniqueness of the solu-
tion to the minimization problem (1.6). In general, as discussed in [11], [13] and [22], there may not exist a
minimizer of Φλ(v), defined in (2.1), since the limit of the minimizing sequence may not take the boundary
value g. However, we can prove the existence of a unique minimizer for a weaker form of (1.6) where we
consider the minimization problem using the relaxed energy, Φλ,g(v), defined in (2.3). Specifically, we define
a pseudosolution of (1.6) as follows.

Definition 3.1. A function u ∈ BV ∩ L2(Ω) is a pseudosolution of (1.6) if it is a solution of

min
v∈BV ∩L2(Ω)

Φλ,g(v) (3.1)

where Φλ,g(v) is defined in equation (2.3).
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First we show that there exists a pseudosolution of (1.6), that is, a solution of (3.1), in Theorem 3.2.
Then, in Theorem 3.5 we provide the motivation for using the notion of pseudosolution in definition 3.1.

Theorem 3.2. Suppose I ∈ BV ∩ L2(Ω), g = TrG for some function G ∈ H1(Ω) with I = g on ∂Ω,
and Ω is an open bounded subset of Rn with Lipschitz boundary. Then there exists a unique pseudosolution
of (1.6) as given in definition 3.1.

Proof. : Let {un} be a minimizing sequence of (3.1) in BV ∩ L
2(Ω). Since {un} is bounded in BV (Ω)

and L2(Ω), using the compactness of BV (Ω) and the weak compactness of L2(Ω), there exists a subsequence
{unk} of {un} and a function u ∈ BV ∩ L

2(Ω) satisfying

unk → u strongly in L1(Ω) (3.2)

unk ⇀ u weakly in L2(Ω). (3.3)

By (3.2), (3.3), lemma 2.3 and the weak lower semi-continuity of the L2-norm, we have that

Φλ,g(u) ≤ lim inf
k→∞

Φλ,g(unk) = inf
BV ∩L2(Ω)

Φλ,g(v).

Hence, u is a solution of the minimization problem. Uniqueness follows from the strict convexity of Φλ,g(v)
in v.

To show (3.7) holds, we need the following two lemmas. For β > 0, let

dβ(x) = min

(
d(x)

β
, 1

)
, (3.4)

where d(x) is the distance of the point x to the boundary of Ω.

Lemma 3.3. (Theorem A.1 [7]): For each v ∈ BV ∩L∞(Ω), the vector measures v∇dβ converge weakly
to −vγdHn−1 as β → 0, where γ is the unit outward normal to ∂Ω, and

lim
β→0

∫

Ω

|v||∇dβ | =

∫

∂Ω

|v|dHn−1.

Lemma 3.4. Let G ∈ H1 ∩ L∞(Ω). Then for any v ∈ BV ∩ L∞(Ω), there exists a sequence {vβ} in
BV ∩ L∞(Ω) such that

Trvβ = TrG in L1(∂Ω),

vβ → v in L2(Ω) as β → 0, and

lim
β→0

Φg(vβ) = Φg(v).

Proof. : For β > 0, define dβ(x) as in (3.4). Since d(x) ∈W
1,∞(Ω) and |∇d| = 1, we have that

|∇dβ | =
1

β
if d(x) < β and |∇dβ | = 0 if d(x) ≥ β (3.5)

Fix v ∈ BV ∩ L∞(Ω) and let vβ = dβv + (1− dβ)G for (x, t) ∈ Ω. Then

vβ ∈ BV ∩ L
∞(Ω) with Trvβ = TrG in L1(∂Ω),

vβ → v in L2(Ω)

By lemma 2.3, lim infβ→0 Φg(vβ) ≥ Φg(v), so it only remains to show that

lim
β→0

Φg(vβ) ≤ Φg(v). (3.6)
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Writing Φg = Φ̃g (lemma 2.3), since D
svβ = dβD

sv and Trvβ = TrG in L1(∂Ω) we have that

Φ̃g(vβ) = sup
ψ∈C1(Ω,Rn)

|ψ|≤1

[∫

Ω

{(v −G)∇dβ + dβ∇v + (1− dβ)∇G} · ψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx+

∫

Ω

dβD
sv · ψ

]

Therefore, by (2.6)

Φ̃(vβ) ≤ sup
ψ∈C1(Ω,Rn)

|ψ|≤1

[∫

Ω

∇v · ψ −
q(x)− 1

q(x)
|ψ|

q(x)
q(x)−1 dx

]

+

∫

Ω

|v −G||∇dβ |dx+

∫

Ω

(1− dβ)(|∇v|+ |∇G|)dx+

∫

Ω

dβ |D
sv|

=

∫

Ω

φ(x,∇v) +

∫

Ω

|v −G||∇dβ |dx+

∫

Ω

(1− dβ)(|∇v|+ |∇G|)dx+

∫

Ω

dβ |D
sv|

By lemma 3.3, as β → 0,

∫

Ω

|v −G||∇dβ |dx→

∫

∂Ω

|v −G|dHn−1.

Furthermore, the Lebesgue Dominated Convergence Theorem gives us that
∫

Ω

(1− dβ)(|∇v|+ |∇G|)dx→ 0

and

∫

Ω

dβ |D
sv| →

∫

Ω

|Dsv|.

Therefore, (3.6) holds and the lemma is proved.

Theorem 3.5.

inf
v∈BVg∩L2(Ω)

Φλ(v) = inf
v∈BV ∩L2(Ω)

Φλ,g(v), (3.7)

where Φλ and Φλ,g are defined in (2.1) and (2.3) respectively and BVg is defined in (1.7).

Proof. : Since BVg(Ω) ⊂ BV (Ω)

inf
v∈BV ∩L2(Ω)

Φλ,g(v) ≤ inf
v∈BVg∩L2(Ω)

Φλ,g(v) = inf
v∈BVg∩L2(Ω)

Φλ(v).

To see the reverse, let u ∈ BV ∩ L2(Ω) be the solution of (3.1); that is,

Φλ,g(u) = min
v∈BV ∩L2(Ω)

Φλ,g(v).

By lemma 3.4, there exist vβ ∈ BVg ∩ L
∞(Ω) such that

Φλ(vβ) = Φλ,g(vβ)
β→0
−→ Φλ,g(u) = min

v∈BV ∩L2(Ω)
Φλ,g(v)

and so

inf
v∈BVg∩L2(Ω)

Φλ(v) ≤ min
v∈BV ∩L2(Ω)

Φλ,g(v).

Thus, the theorem holds.

4. The Flow related to the Minimization Problem (3.1).
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4.1. Motivation for the Weak Solution.
Suppose that

v ∈ L2(0, T ;H1(Ω)) (4.1)

and that u is a classical solution of (1.8)-(1.10). Multiplying (1.8) by (v − u), integrating over Ω, and using
the convexity of φ we have that

∫

Ω

u̇(v − u)dx+Φλ,g(v) ≥ Φλ,g(u) (4.2)

Integrating over [0, s] for any s ∈ [0, T ] then yields
∫ s

0

∫

Ω

u̇(v − u)dxdt+

∫ s

0

Φλ,g(v)dt ≥

∫ s

0

Φλ,g(u)dt (4.3)

On the other hand, setting v = u+ εw in (4.3) with w ∈ C∞0 (Ω) makes it clear that
∫ s

0

∫

Ω

u̇(εw)dxdt+

∫ s

0

Φλ,g(u+ εw)dt

attains a minimum at ε = 0. Therefore, if u satisfies (4.3) and u ∈ L2(0, T ;BV ∩ L2(Ω)) with u̇ ∈ L2(ΩT ),
u is also a solution of (1.8)-(1.10) in the sense of distribution. This motivates the following definition:

Definition 4.1. We say that a function u ∈ L2(0, T ;BV ∩L2(Ω)) with u̇ ∈ L2(ΩT ) is a pseudosolution
of (1.8)-(1.10) if

1. u(x, 0) = I(x) on Ω, and
2. u satisfies (4.3) for all s ∈ [0, T ] and v ∈ L2(0, T ;BV ∩ L2(Ω)).

4.2. The Approximate Functional, φε.

For ε > 0, define

φε(x, r) :=

{
1

q(x) |r|
q(x), |r| ≤ 1

1
1+ε |r|

(1+ε) − q(x)−(1+ε)
(1+ε)q(x) , |r| > 1

(4.4)

Remark 4.2. We note the following properties, as they will be useful in later computations.
1. φε(x, r) is convex in r.
2. φεr(x, r) · r ≥ 0 for all r ∈ Rn;
3. φ(x, r) ≤ φε(x, r) for all r ∈ Rn.

To prove the existence and uniqueness of the pseudosolution of (1.8)-(1.10), we first study solutions of
the approximate problem

u̇− ε∆u− div (φεr(x,∇u)) + λ(u− I) = 0, in Ω× [0, T ] (4.5)

u(x, t) = g(x), in ∂Ω× [0, T ] (4.6)

u(x, 0) = Ĩ(x), in Ω (4.7)

where Ĩ ∈ H1 ∩ L∞(Ω), g ∈ L∞(∂Ω) with g = TrG in L1(∂Ω) for some G ∈ H1(Ω), and Ĩ|∂Ω = g.

Lemma 4.3. Suppose Ĩ ∈ H1(Ω) with Ĩ|∂Ω = g. Then the problem (4.5)-(4.7) has a unique solution
u ∈ L2(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω)) with u̇ ∈ L2(0, T ;L2(Ω)) such that

∫ ∞

0

∫

Ω

|u̇|2dxdt+ sup
t>0

[∫

Ω

ε

2
|∇u|2 + φε(x,∇u) +

λ

2
|u− Ĩ|2

]
≤
ε

2

∫

Ω

|∇Ĩ|2 + φε(x,∇Ĩ)dx (4.8)
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Proof. : Since (4.5) is uniformly parabolic, we can conclude this lemma by standard results for parabolic
equations [12] and the corresponding energy estimate.

4.3. Estimates for the Solution of the Approximate Problem.

Lemma 4.4. If Ĩ ∈ H1 ∩ L∞ ∩ BV (Ω), g ∈ L∞(∂Ω) with Ĩ|∂Ω = g, and u is a solution of (4.5)-(4.7),
then

||u||L∞(ΩT ) ≤ max(||Ĩ||L∞(Ω), ||g||L∞(∂Ω)) (4.9)

Proof. : Let M := max(||Ĩ||L∞(Ω), ||g||L∞(∂Ω)). Multiply (4.5) by (u−M)+, where

(u−M)+ =

{
u−M if u−M ≥ 0
0 otherwise

and integrate over Ω to get

∫

Ω

u̇(u−M)+dx+ ε

∫

Ω

|∇u|2dx+

∫

Ω

φεr(x,∇u) · ∇udx+ λ

∫

Ω

(u− Ĩ)(u−M)+dx = 0 (4.10)

By Remark 4.2 (2) we have that
∫
Ω
φεr(x,∇u) · ∇udx ≥ 0 and so

1

2

∫

Ω

d

dt
(u−M)2+dx ≤ 0

Therefore, 12
∫
Ω
(u−M)2+dx is decreasing in t and since

1

2

∫

Ω

(u−M)2+dx ≥ 0 and
1

2

∫

Ω

(u−M)2+dx|t=0 = 0,

we have that

1

2

∫

Ω

(u−M)2+dx = 0 for all t ∈ [0,T]

and so

u(t) ≤M = max(||Ĩ||L∞(Ω), ||g||L∞(∂Ω)) L − a.e. on Ω ∀t > 0.

Multiplying (4.5) by (u+M)+, a similar argument yields that u(t) ≥ −M for all t. (4.9) follows directly.

Lemma 4.5. Let u be the solution of (4.5)-(4.7). Then for all v ∈ L2(0, T ;H1(Ω)) with v|∂Ω = g,
∫ s

0

∫

Ω

u̇(v − u) +
ε

2
|∇v|2 + φε(x,Dv) +

λ

2
|v − Ĩ|2dxdt

≥

∫ s

0

∫

Ω

ε

2
|∇u|2 + φε(x,Du) +

λ

2
|u− Ĩ|2dxdt (4.11)

Proof. : Multiplying (4.5) by v − u, then integrating by parts and using the convexity of φε(x, r) in r,
(4.11) follows.

Remark 4.6. Let u be the solution of (4.5)-(4.7). Then for any 0 < ε < α − 1 (where 1 < α ≤ q(x))
we have the following estimate which is a direct consequence of lemma 4.3:

∫ ∞

0

∫

Ω

|u̇|2dxdt+ sup
t>0

[∫

Ω

1

1 + ε
|∇u|1+εdx+

λ

2

∫

Ω

|u− Ĩ|2dx

]
≤ C (4.12)

where C > 0 is a constant depending only on Ω and ||∇Ĩ||L2(Ω).
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4.4. Existence and Uniqueness of (1.8)-(1.10).

Since I ∈ BV ∩L∞(Ω), by lemma 2.4 and remark 2.5 there exists a sequence {Iδ} in H
1 ∩L∞(Ω) such that

TrIδ = TrI on ∂Ω, (4.13)

||Iδ||L∞(Ω) ≤ C||I||L∞(Ω), (4.14)

Iδ → I strongly in L2(Ω) as δ → 0, and (4.15)

Φλ,g(Iδ) ≤ Φλ,g(I) + δ. (4.16)

Theorem 4.7. (Existence and Uniqueness) Suppose I ∈ BV ∩ L∞(Ω), g ∈ L∞(∂Ω) and I|∂Ω = g
with g = TrG for some function G ∈ H1(Ω). Then there exists a unique pseudosolution u ∈ L∞(0,∞;BV ∩
L∞(Ω)) of (1.8)-(1.10).

Proof. : 1. First we fix δ > 0 and pass to the limit ε→ 0.

Let {uεδ} be the sequence of solutions to (4.5)-(4.7) with initial data Ĩ = Iδ. By lemma 4.4 and remark
4.6, there exists a subsequence {uεiδ } and a function uδ ∈ L

∞(Ω∞) with u̇δ ∈ L
2(Ω∞) such that as εi → 0,

uεiδ ⇀ uδ weakly
∗ in L∞(Ω∞) (4.17)

u̇εiδ ⇀ w weakly in L2(Ω∞) (4.18)

The same argument used in the proof of lemma 3.1 in [22] gives us that u̇δ = w and uδ(0) = Iδ.
Moreover, for all f ∈ L2(Ω),

∫

Ω

(uεiδ (·, t)− Iδ)f(x)dx =

∫ t

0

∫

Ω

u̇εiδ (x, s)1[0,t](s)f(x)dxds

εi→0−→

∫ t

0

∫

Ω

u̇δ(x, s)1[0,t](s)f(x)dxds =

∫

Ω

(uδ(·, t)− Iδ)f(x)dx.

Therefore, for each t > 0,

uεiδ (·, t)⇀ uδ(·, t) weakly in L
2(Ω) (4.19)

From (4.12), for each t > 0, {uεiδ } is a bounded sequence in W
1,1(Ω). Therefore, there exists a convergent

subsequence {u
εij
δ } of {u

εi
δ } such that

u
εij
δ (·, t)→ uδ(·, t) strongly in L

1(Ω)

Note that every convergent subsequence of {uεiδ } converges to the same limit uδ(·, t) due to (4.19). Then,
for each t > 0,

uεiδ (·, t)→ uδ(·, t) strongly in L
1(Ω) (4.20)

From (4.17) and (4.20), we have that for each t > 0,

uεiδ (·, t)→ uδ(·, t) strongly in L
2(Ω) (4.21)

We also have from (4.12) and (4.20) that uδ ∈ L
∞(0,∞, BV ∩L∞(Ω)) with u̇δ ∈ L

2(Ω∞). Furthermore, by
lemma 4.5, for all v ∈ L2(0, T ;H1(Ω)) with v|∂Ω = g,

∫ s

0

∫

Ω

u̇εiδ (v − u
εi
δ ) +

εi
2
|∇v|2 + φεi(x,∇v) +

λ

2
|v − Iδ|

2dxdt

≥

∫ s

0

∫

Ω

εi
2
|∇uεiδ |

2 + φεi(x,Duεiδ ) +
λ

2
|uεiδ − Iδ|

2dxdt (4.22)
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Using (4.18) and (4.21), we can let εi → 0 in (4.22) to get

∫ s

0

∫

Ω

u̇δ(v − uδ) + φ(x,∇v) +
λ

2
|v − Iδ|

2dxdt (4.23)

≥ lim
εi→0

∫ s

0

∫

Ω

φεi(x,Duεiδ )dxdt+
λ

2

∫ s

0

∫

Ω

|uδ − Iδ|
2dxdt

By lemma 2.3, w.l.s.c. and Remark 4.2 (3),

lim
εi→0

∫ s

0

∫

Ω

φεi(x,Duεiδ )dxdt ≥

∫ s

0

∫

Ω

φ(x,Duδ)dxdt+

∫ s

0

∫

∂Ω

|uδ − g|dH
n−1dt (4.24)

The combination of (4.23) and (4.24) gives us

∫ s

0

∫

Ω

u̇δ(v − uδ) + φ(x,∇v) +
λ

2
|v − Iδ|

2dxdt+

∫ s

0

∫

∂Ω

|v − g|dHn−1dt

≥

∫ s

0

∫

Ω

φ(x,∇uδ) +
λ

2
|uδ − Iδ|

2dxdt+

∫ s

0

∫

∂Ω

|uδ − g|dH
n−1dt (4.25)

for all v ∈ L2(0,∞;H1(Ω)) with v = g on ∂Ω∞. By approximation, (4.25) still holds for v ∈ L2(0,∞;BV ∩
L∞(Ω)) with v = g on ∂Ω∞. To see that (4.25) holds for all v ∈ L2(0,∞;BV ∩ L∞(Ω)) (in particular,
without v = g on ∂Ω∞), replace v by vβ = dβv + (1 − dβ)G in (4.25) and (by lemma 3.4) let β → 0. By
approximation, we can conclude that (4.25) holds for all v ∈ L2(0,∞;BV ∩ L2(Ω)).

2. Now it only remains to pass to the limit as δ → 0 in (4.25) to complete the proof.

First note that (4.8) holds for uεiδ with Ĩ = Iδ. Fix δ > 0. By w.l.s.c. and (4.20), the same argument used
to deduce (4.24) also gives us that

lim
εi→0

∫

Ω

φεi(x,Duεiδ )dx ≥

∫

Ω

φ(x,Duδ)dx+

∫

∂Ω

|uδ − g|dH
n−1.

Therefore, we can pass to the limit as εi → 0 in (4.8) and get

∫ ∞

0

∫

Ω

|u̇δ|
2dxdt+ sup

t>0

[∫

Ω

φ(x,Duδ)dxdt+
λ

2
|uδ − Iδ|

2 +

∫

∂Ω

|uδ − g|dH
n−1dt

]
≤

∫

Ω

φ(x,∇Iδ)dx (4.26)

Then {uδ} is uniformly bounded in W
1,1(Ω) for each t > 0. Note also that in lemma 4.4 the bound is

independent of both ε and δ. Therefore, {uδ} is also uniformly bounded in L
∞(Ω∞). From (4.26), we also

have {u̇δ} is uniformly bounded in L
2(Ω∞).

By the same argument used to obtain (4.17), (4.18), and (4.21), there exists a subsequence {uδj} of {uδ}
and a function u ∈ L∞(0,∞, BV ∩ L∞(Ω)) with u̇ ∈ L2(Ω∞) such that as δj → 0,

uδj ⇀ u weakly∗ in L∞(Ω∞) (4.27)

u̇δj ⇀ u̇ weakly in L2(Ω∞) (4.28)

uδj (·, t)→ u(·, t) strongly in L2(Ω) and uniformly in t (4.29)

Let δ = δj in (4.25). Using w.l.s.c. and (4.27)-(4.29), we can let δj → 0 in (4.25) to conclude that for all
v ∈ L2(0,∞, BV ∩ L2(Ω)),

∫ s

0

∫

Ω

u̇(v − u)dxdt+

∫ s

0

Φλ,g(v)dt ≥

∫ s

0

Φλ,g(u)dt.

Existence is proved.
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4. (Uniqueness) Suppose that u1, u2 are both weak solution of (1.8)-(1.10). As in [11] and [22], we can
obtain two inequalities: the first by setting u = u1 and v = u2 in (4.3) and the second by setting u = u2 and
v = u1. Adding these two inequalities gives us that for all s > 0,

∫ s

0

∫

Ω

1

2

d

dt
|u1 − u2|

2dxdt ≤ 0.

Therefore, u1 = u2 in Ω
∞.

4.5. Behavior as t→∞.

Theorem 4.8. As t → ∞, the weak solution, u(x, t), of (1.8)-(1.10) converges strongly in L2(Ω) to a
minimizer ũ of the function Φλ,g; i.e., the pseudosolution, ũ, of (3.1)

Proof. : Since u satisfies (4.3), for any s > 0 we can substitute v(x) ∈ BV ∩ L2(Ω) into (4.3):
∫

Ω

(u(x, s)− I(x))v(x)dx−
1

2

∫

Ω

(u2(x, s)− I2(x))dx+ s

∫

Ω

φ(x,∇v) + s
λ

2

∫

Ω

|v − I|2dx+ s

∫

∂Ω

|v − g|dHn−1

≥

∫ s

0

∫

Ω

φ(x,∇u)dt+
λ

2

∫ s

0

∫

Ω

|u− I|2dxdt+

∫ s

0

∫

∂Ω

|u− g|dHn−1dt (4.30)

Proceeding as in [7], let

w(x, s) =
1

s

∫ s

0

u(x, t)dt.

Since u ∈ L∞(0,∞;BV ∩ L∞(Ω)), for each s > 0 we have that w(·, s) ∈ BV ∩ L∞(Ω) with {w(·, s)}
uniformly bounded in BV (Ω) and L∞(Ω). Therefore, there exists a subsequence {w(·, si)} of {w(·, s)} which
converges strongly in L1(Ω) and weakly in BV (Ω) and L∞(Ω) to a function ũ ∈ BV ∩ L∞(Ω) as si → ∞.
Since {w(·, s)} is uniformly bounded in L∞(Ω), {w(·, si)} also converges strongly in L

2(Ω) to ũ.
Dividing (4.5) by s and taking the limit along si →∞ gives us that

∫

Ω

φ(x,∇v) +
λ

2

∫

Ω

|v − I|2dx+

∫

∂Ω

|v − g|dHn−1 ≥

∫

Ω

φ(x,∇ũ) +
λ

2

∫

Ω

|ũ− I|2dx+

∫

∂Ω

|ũ− g|dHn−1

for all v ∈ BV ∩ L2(Ω), i.e., ũ is a pseudosolution of (3.1).

5. Numerical Methods and Experimental Results. We solve the minimization problem (1.3)
numerically using the flow of its associated Euler-Lagrange equation,

∂u

∂t
− div (φr(x,Du)) + λ(u− I) = 0, in Ω× [0, T ] (5.1)

∂u

∂n
(x, t) = 0, on ∂Ω× [0, T ] (5.2)

u(0) = I, in Ω (5.3)

To approximate (5.1), we use an explicit finite difference scheme. The degenerate diffusion term

div (φr(x,∇u)) = |∇u|
p(x)−2

[
(p(x)− 1)∆u+ (2− p(x))|∇u|div

(
∇u

|∇u|

)
+∇p · ∇u log |∇u|

]

where we chose

p(x) =

{
q(x) ≡ 1 + 1

1+k|∇Gσ∗I(x)|2
, |∇u| < β

1, |∇u| ≥ β
(5.4)

for k, σ > 0 and Gσ the Gaussian filter, is approximated as follows:
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Fig. 5.1. First Row: true image (100×100), surface plot of the image, surface rotated 180o, edge map (5.6); Second
Row: image + noise; Third Row: reconstruction using isotropic diffusion only (200 iterations): Fourth Row: reconstruc-
tion using TV-based diffusion only (2000 iterations); Fifth Row: reconstruction using the proposed model (1000 iterations,
β=30, k=.0075)

• the coefficient, |∇u|p(x)−2, is approximated using central differences,

• the isotropic diffusion term, ∆u is approximated using central differences,

• the curvature term, |∇u|div
(
∇u
|∇u|

)
is approximated using the minmod scheme for div

(
∇u
|∇u|

)
(see

[18]) and central differences for |∇u|,

• if |∇u| 6= 0, the hyperbolic term ∇p · ∇u log |∇u| is computed using an upwind scheme for ∇p · ∇u
(see [16]) and central differences for log |∇u|. Otherwise, the hyperbolic term is set to zero.

We found that the behavior of (1.3) is innate to the model and variants on this numerical scheme also yield
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Fig. 5.2. Top Row: original piecewise smooth image (256×256) and edge map (5.6), image + noise and edge map (5.6);
Bottom Three Rows: First Column. reconstructions using (1.2) with thresholds β = 30, 50, 70 respectively (1000 itera-
tions); Second Column. corresponding edge maps (5.6) Third Column. reconstruction using TV-based diffusion only (2000
iterations) and the proposed model with thresholds β = 30, 100 respectively (1000 iterations); Fourth Column. corresponding
edge maps (5.6) (all images: k=.0075, λ=.05, σ=.5, timestep=.05)

very good results.

We compared our model with the flow of the Euler-Lagrange equation associated with (1.2) (modified
only by a fidelity term),

∂u

∂t
= (p− 1)∆u+ (2− p)div

(
∇u

|∇u|

)
− λ(u− I) where p =

{
2, |∇u| < β

1, |∇u| ≥ β
. (5.5)

An explicit finite difference scheme was used, where central differences were used to implement ∆u and the

minmod scheme [18] was used to implement div
(
∇u
|∇u|

)
.

All of the images ranged in intensity from 0 to 255. The parameters λ=.05, σ=.5, k = .0075, and time
step=.05 consistently yielded optimal results for all of the models we tested here. We compared various
thresholds, β, to test both models (1.2) and (1.3)’s sensitivity to this parameter. All of the ’edge maps’ in
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Fig. 5.3. Top Row: radar image (256×256) and edge map (5.6); radar image with Gaussian noise and edge map (5.6)
with k = .0075; Bottom Three Rows: First Column. reconstructions using (1.2) with thresholds β = 10, 20, 30 respectively
(1000 iterations); Second Column. corresponding edge maps (5.6) Third Column. reconstruction using TV-based diffusion
only (4000 iterations) and the proposed model with thresholds β = 30, 100 respectively (1000 iterations); Fourth Column.
corresponding edge maps (5.6) (all images: k=.0075, λ=.05, σ=.5, timestep=.05)

the figures were computed using the function

edge map of u :
1

1 + k|∇Gσ ∗ u(x)|2
(5.6)

with k = .0075 (the same value of k is also used to compute the exponent p(x) in (5.4)). We found that this
value also gave the clearest edge map for each model. The number of iterations were chosen large enough so
that the standard deviation between subsequent images was at most .005.

In figure 5.1 we illustrate the proposed model’s ability to reconstruct piecewise smooth functions while
avoiding the staircasing effect. The first row contains a piecewise smooth function plotted as both an image
and a surface, as well as it’s edge map (5.6). The surface is viewed from two different orientations; the first
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Fig. 5.4. First Column: radar image of land mines (256×256), reconstructions using (1.2) with thresholds β = 10, 20
respectively (750 iterations); Second Column: corresponding edge maps (5.6); Third Column: reconstruction using TV-
based diffusion only (1000 iterations), reconstructions using the proposed model with thresholds β = 30, 100 respectively (750
iterations); Fourth Column: corresponding edge maps (5.6); (all images: k=.0075, λ=.05, σ=.5, timestep=.05)

view displays the upper left corner of the image at the origin and the second is the same surface rotated 180o.
The second row contains the same series of images for the image degraded by Gaussian noise with mean
zero. The third, fourth, and fifth rows contain reconstructions using isotropic diffusion only (p ≡ 2), TV-
based diffusion only (p ≡ 1), and the proposed model respectively. Isotropic diffusion reconstructs smooth
regions, but edges are severely blurred. TV-based diffusion reconstructs sharp edges, but the ’staircasing
effect’ is clearly present. This in turn creates false edges which could lead to an incorrect segmentation of
the image. The proposed model reconstructs sharp edges as effectively as TV-based diffusion and recovers
smooth regions as effectively as pure isotropic diffusion (in particular, without staircasing).

Figure 5.2 contains a reconstruction of another piecewise smooth image with additive Gaussian noise.
Our goal is to once again reconstruct the smooth regions while preserving their boundaries and without
introducing false edges. Furthermore, we also wanted to compare the sensitivity of models (1.2) and (1.3) to
the threshold, β. The top row shows the original and noisy images with their edge maps (5.6). The bottom
three rows contain reconstructions using models (1.2) and (1.3). The first column contains reconstructions
using (1.2) with thresholds β = 30, 50 and 70 respectively and the second column contains their corresponding
edge maps (5.6). The third column contains reconstructions using TV-based diffusion only ((1.2) or (1.3)
with β = 0) and the proposed model (1.3) with thresholds β = 30 and 100 respectively. The last column
contains their corresponding edge maps (5.6). TV-based diffusion only (β = 0), shows clear evidence of
staircasing, while the proposed model is relatively insensitive to a broad range of thresholds, β. Although
the exact behavior of the diffusion changes slightly at likely edges between β = 30 and β = 100, the effect
on the resulting image is minimal. On the other hand, model (1.2) demonstrates a large change in behavior
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Fig. 5.5. First Row: true image (256×256) and edge map (5.6), true image + noise and edge map (5.6); Second
Row: reconstructions using TV-based diffusion only (2000 iterations) and the proposed model with thresholds β = 30, 100
(1000 iterations, k = .0075) Third Row: corresponding edge maps (5.6) (all images: k=.0075, λ=.05, σ=.5, timestep=.05)

at both noise and edges across the range of thresholds β = 30, 50 and 70. Similar experiments on the noisy
radar images in figures 5.3 and 5.4 yielded very similar results. Note that in figure 5.3, even fine details
such as the lettering at the bottom of the image are preserved using the proposed model. In figure 5.4, the
proposed model preserves the boundaries of the land mines as effectively as the TV model without enhancing
the background noise.

Figure 5.5 provides another successful reconstruction of a piecewise smooth image with additive Gaussian
noise. TV-based diffusion alone creates false edges, while the proposed model preserved accurate object
boundaries while minimizing the creation of false ones. Tests with β = 30 and 100 again demonstrate the
proposed model’s insensitivity to the threshold, β. Figure 5.6 is a similar experiment with an MRI of a
heart. The original image is successfully denoised using the proposed model (top row). We then added more
noise and as in the previous experiments found that TV alone created false edges while the proposed model
generated much fewer false artifacts.

Figure 5.7 contains several more examples in which the noise in each of the images was acquired directly
through acquisition, storage, or transmission. The first row contains a diffusion tensor image (DTI) of a
brain, the second contains an MRI of a chest cavity, the third contains a transmission electron microscope
(TEM) image of aluminum. In all of these images, the goal is to detect ’true’ object boundaries without
creating any false edges. The proposed model is successful in all of these cases.

Acknowledgments. The authors would like to thank Bernard Mair for the radar images in figures 5.3
and 5.4, Sebastien Barre for the MRI in figure 5.6, and Yijun Liu for the DTI image, Mark Griswold for the
MRI, and Katayun Barmak for the TEM image in figure 5.7.
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Fig. 5.6. First Row: true image: heart MRI (256×256), corresponding edge map (5.6), reconstruction using the proposed
model (threshold β = 30), edge map (5.6); Second Row: heart MRI + noise, edge map (5.6), reconstruction using TV-based
diffusion only, edge map (5.6); Third Row: reconstruction using the proposed model (threshold β = 30); edge map (5.6),
reconstruction using the proposed model (threshold β = 100), edge map (5.6) (all images: k=.0075, λ=.05, σ=.5, timestep=.05)
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